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DYNAMIC STRESS CONCENTRATION IN GLASS-FIBER-REINFORCED PLASTIC 

A. A. Ermak and A. M. Mikhailov UDC 539.3+539.4 

INTRODUCTION 

In this paper the problem of stress concentration around defects is investigated. The 
discrete model of glass-fiber-reinforced plastic [i, 2] is used, in which it is assumed that 
the fibers work on expansion and the bonding on shear; the inertia of both components is tak- 
en into consideration. 

w Let the glass-fiber-reinforced plastic consist of an infinite number of fibers of 
width h with their number indicated by integers J. The fibers alternate with layers of the 
bonding of width H. The y axis is parallel and x axis perpendicular to the fibers. The dis- 
placement of the bonding along the y axis is denoted by vj(x, y, t); the index j shows that 

the point under investigation lies between the j-th and (j + l)st fibers at a distance x from 
the j-th (0~.x~H); t is the time. The displacement of the fiber is denoted by uj(y, t). 
Hooke's law has the following form: 

ffj(y, t)= EOuj(y, t)/Oy, ~(x, y, t)= GOvj(x, y, t)/Ox; ( l . 1 )  

w h e r e  o .  a n d  E a r e  t h e  n o r m a l  s t r e s s  and  t h e  Young m o d u l u s  i n  t h e  f i b e r  and  ~ .  and  G a r e  t h e  
3 3 

tangential stress and the shear modulus in the bonding. 

It is shown in [2] that for zero initial conditions the behavior of the above system is 
described by the equations 

C.O~ d~ zz~ " + + uj% ) = 0, 

~ = G/E, co ~ = Hh sh ~/~, ~ = pH/c~, 

a = p~cos/~2c~ + 2ch ~, c~ = E/PD c~ = G/p~, 

(1.2) 

where s index L denotes the Laplace (time) transform of the desired quantities, p is the 
transform parameter, and ~ and ~2 are the densities of the fiber and bonding materials, re- 
spectively. After determining u~, the displacement in the bonding is determined by the for- 
mula 

(i 

and the stresses o~ and r~ are determined in accordance with (i.I) and (1.3). The solution 
3 3 

of (1.2) that vanishes at y ~ ~ has the form [2] 
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where c(p, s) is determined from the boundary conditions. 

w Let the sample be stretched to infinity by a tension Q and at t = 0 in the cross 
section y = 0 let the fibers with numbers j = 0, ..., n suddenly break. Making use of the 
symmetry of the problem we take y~0. We shall solve the obtained problem by Subtracting 
the elastic field corresponding to homogeneous stretching by tension Q. For n = 0 this prob- 
lem is solved in [3], the case of a simultaneous bKeak of all fibers is investlga=ed in [2], 
and the static problem is solved in [4]. 

According to the model adopted above (the bonding does not carry normal loads), the 
boundary conditions for system (1.2) have the following form: 

d~ly=o = Qp, ] = 0  . . . . .  n, um[y=o=O, ]=/=0 . . . .  ,n. (2.1) 

It follows from (1.4) and (2.1) that Only a finite number of Fourier coefficients are non- 
zero in the function c(p, s), i.e., 

c (p, s) ~ ck (p) e~k, 
k=O 

where Ck(p) satisfies the system of linear algebraic equations 

Z.~ ch (P) f (p, s) eL~(a-J)ds = 2nQ 
- -  ~pE' 

h : O  --~I (2.2) 

In order to solve this system we expand Ck, f in Taylor series in the vicinity of the point 
B = O: 

ra=O "m=O 

Later on u L, a j, and TL3 will also be determined in the form of power series of ~. According 

to the lag theorem of operational calculus, the terms of these series describe waves arriving 
from increasingly more distant fibers. We shall now proceed to solve the system. Putting 

= 0 in (2.2), we obtain 

h=0 __~ 

However, fo(p, s) is independent of s, so that 

y foe~s(h-J)ds = 12n/o, k = ], (2.3) 
_ .  t O, k=/=] 

and the system under consideration breaks up into individual equations; 

c~o(p) = - Q / ~ p E A ,  ] = 0 .. . .  , n, 

We note that cj is the transform of the displacement of the j-th fiber at y = 0. The 

free term of the Taylor series (~ = 0, i.e., H/c2 = ~) describes the motion of a single fi- 
ber in infinite bonding. It is clear from physical considerations that before the arrival 
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of the elastic waves from the adjacent fibers all the broken fibers move identically. 
fore, cj, also does not depend on the number j. 

We differentiate (2.2) with respect to ~ and again put ~ -- 0. We then have 

ckl f / o  ei'`<~-j)ds + Cho f leis(k-~)ds O. 
h=0 __.~ h=0 __~ 

Hence, in accordance with (2.3) we obtain 

2~/oc~, = -  ~ Cho .[/lei'<k-J>ds, 
h=0 __.~ 

i.e., cjz are expressed in terms of Cko that are already determined. Proceeding in the 
same way we obtain Cjm in terms of Ckl, where 0 ~< l~ m -- i. At each differentiation the 
corresponding system will break up by virtue of (2.3). This recurrent process has the fol- 
lowing form: 

Clo = --Q/~PE/o, 
m ~rt--I t 

CJm - -  2 n / o Z  ~i cIa ~ ]m-te's(k--i)ds" (2.4) 
h=0 /=0 --~ 

We now turn to the evaluation of fk = (i/k!)~kf/~k[B= o. We rewrite f and fo in the form 

+ 

Making use of the formula for obtaining the k-th derivative of a complex function ([5], 
formula 0.430) and assuming that the derivative is taken at the point ~ = 0, we obtain 
[taking (--I)!! = i] 

k [k12--l/2] 

i~(p, ~) = i / ~ -  ~ ~ ( -  t),+~-~ • 
V czh/=1 r = g ( k - - 2 1 - ~ - l )  

(2/--  3)!! (l + r - -  t)! (cos s) 2l'~'2r-k ( 2 . 5 )  >( 
rl (1-- 1)l (k--l--2r)l (2/-~ 2 r - -k ) l  (a ~- i / - 1 / 2 "  

The square brackets denote that the integer part of the number is taken and g(x) = max(0 
[x/2]). Since 21 + 2r- k 90, from formula 3.631.17 [5] we obtain 

There- 

w h e r e  

i ~ f,r.-l-l-t-m/2--k/2 (COSS)2l+2r-helmSds = ((-- t)~-7-(--l)m) : r8o(2/  2r -k lm[) u2t+2r-k , (2.6) 221+2r_#t -7" 

1, if x ~ 0 ,  
8o(X)= 0, if x < 0 ;  

Substituting (2.5) and (2.6) into 

Q V~ i 
cJ~ = - -  2fiE p312 (a -t- t) 1/2 ' 

m m--I m--Z |m--I--r/2l 

k = 0  / = 0  r = l  q=g(m--I--2r+i) 2~-Fi X 

l 
C k are the binomial coefficients. 

8o(X+i--}k-- iD(r-4-q--i)!(2r--3)t l  clot 
X ( r - - l ) l  ql ( r - - z ) l  [(;r [(~--k+])/2]I (a..{_ t)r ' 

z =  2r + 2q + l - -m .  

(1 .1 ) ,  and (2.7)  t ha t  
r i l l  

Q ]/'h'~c~ '~  ~ (DU)lm r 
U L (0, p)  = 2~E ~,~=0 ~'tm,::U= p3/2 (a + i) r'Fl/2' 

o o  /rt 

: Q 
= = p ( a + t )  r '  

(2.4) we obtain 

(2.7) 

(2.8) 

It follows from (1.4), 
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TLn (0, O, p) = Q~ V'h ~ m (DT)mr 
2 ]/~2 p m X pi/2 (a + l) r+l/2 ' 

ra .=O r = O  

where (Du)jmr, (DO)mr, (DT)mr are some numerical coeffidients which, unlike Cjm , no longer 
depend on p. Analogously to the formulas derived above, there are recurrent relationships 
for these coefficients also, which are not presented here due to their unwieldiness. 

Using the inversion formulas of the Laplace transform from [6], we obtain 

pU2 ( a+ i ) r+ l /2 - : - -  V H a ( 2 r - -  l)!l v e-bOc~176 ~--" F "ff-Jr(bO) ' 
0 

bO 
t �9 1 (* 

p (a + t) ~ - ~  ~ j ~r-~e-~'d~. ~ q)r (~), 
o 

. V o,o(4(bo ) zbo 
p3/2 (a + 1) r+l/2 ~ V -~'~ ZO 2r - -  t 

where b = 202H/plh is the parameter of the material, which is equal to twice the ratio of 
the mass of one layer of bonding to the fiber mass; 0 = tc2/H is the dimensionless time. 
For the functions Jr(E) and r the following recurrent formulas hold: 

do(~ )=  Io(~/2)e-U2, d l ( ~ ) =  ~(1o(~/2)-- Ii(~/2))e-i/L 

4 (~)= 2r2-~_~ ~ ((i + ~ ) , L - 1  (~)- .r~_2 (~)), 
qbl(~)= I - -  e-~, (Dr(~)= O r - l ( ~ ) - -  ~r-xe-U(r  - -  1)[, 

where Io and I~ are Bessel functions of imaginary argument and of zero and first order, re- 
spectively. We can now turn to (2.8) and write the displacement and the stress as functions 
of time and coordinates (only the tangential stress is given): 

~o 
%~(0, O, O)= a3/2OQbi/~ ( 2 n +  t)Vt ~ 5 o ( O - - m  ) ~ (Dr)mrdr(bO--bm): ( 2 . 9 )  

2n+2nl "" m=O r=O " : 

At any time t, (2.9) contains a finite number of terms, since the Heaviside function vanishes 
at sufficiently large t. Physically, it means that at any finite instant of time any fiber 
interacts with a finite number of other fibers. We shall give the expressions for the normal 
and tangential stresses for the case n = 0, 0 < 4: 

13 b (0 -- 3) e-b<e-3> -- 5 b~(0_3)~e--b(0--3~)So(0 3), 

n (0, 0, 0) = 10 (b0/2) e-beI280 (0) + 
V~0 

(T* is the static value of the tangential stress). 
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The recurrence formulas for Jr and ~r and the coefficients (DT) make formula (2.9) and 
analogous formulas for uj and ~n+: convenient for computations on a computer. The dependence 
of uo/u~ (u~ is the static value of uo) on the dimensionless time e is shown in Fig. 1 for 
two broken fibers (graphs for a single broken fiber are given in [3]). The graphs of an+:/Q 
for b = i0 are given in Fig. 2 for n = 0, i, 2, 3, and 4, where unity, corresponding to 
homogeneous stretching by a tension Q at infinity, has been added to the values of this ratio. 
It is evident that the consideration of the inertia of the bonding results in an increase of 
the stress concentration at the first unbroken fiber compared to the static concentration 
(dashed lines); the ratio of the dynamic to static concentration is practically independent 
of b, has almost no dependence on n, and is equal to 1.2. The curves get closer together 
in dimensionless time as b increases. As t § ~, uo and On+1 tend to their static values. 

The graphs of Tn/T ~ for b = 1 are shown in Fig. 3 for one, two, and three broken fibers. 
The dynamic concentration of the tangential stress considerably exceeds the static concentra- 
tion and their ratio increases with b (see graphs in [3]). It is evident that at the in- 
stants ~ = 2m, rn has discontinuities and in contrast to other quantities it does not tend 
to the static value with time (dashed lines). This fact, which seems strange at first sight, 
is a natural consequence of the idealization adopted. In the model the bonding represents a 
set of "strings" rigidly connected with the fibers and interacting with each other. The be- 
havior of each "string" is described by the wave equation. In the n-th layer of the bonding, 
in the section y = 0, one end of the corresponding "string" is fixed, and, as can be shown, 
the velocity of the other end has a discontinuity at 0 = 0 and is continuous thereafter. 
Therefore, a discontinuity of the tangential stress that is constant in magnitude travels 
along the "string." This occurs not only in the n-th layer of the bonding but also every- 
where on a crack. Discontinuities of the tangential stress will also occur in the bonding 
y > 0, but apparently the magnitude of the discontinuity will no longer be constant. It 
remains unclear whether T n will tend to its static value for y > O. 

On the basis of the above discussion we note the following: 

i. All the other quantities for y > 0 can also be determined similarly. The coeffi- 
cients c k will be the same, since they aredetermined by the boundaryconditions, while f exp. 
(--Byf) will figure in all the operations instead of the function f. 

2. The broken fibers need not necessarily be successive; it is possible to solve the 
problem with arbitrary arrangement of the broken fibers under the condition that all the 
fibers break on the line y = O. It is also possible to consider nonsimultaneous breaking of 
different fibers. In this case the right-hand sides in system (2.2) will depend on the 
number of the equation, but the method of solving the system will remain the same. 

3. It has been assumed so far that after the initial breaking of (n + i) fibers the 
sample does not subsequently disintegrate. Let us consider at what instant and in what way 
the disintegration of the sample begins depending on the endurance characteristics of the 
fiber and bonding materials. 
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We shall assume that the fiber-glass-reinforced plastic can disintegrate in two ways: 
by breaking of the fiber and by lamination of the bonding. Since the concentration of the 
normal stresses is maximum at the first unbroken fiber at y = 0, we shall assume that the 
breaking of the fiber may primarily occur just at this point. The concentration of the 
tangential stresses is maximum in the n-th layer of the bonding at the boundary of the (n + 
l)-st or n-th fiber at y = 0; therefore, we shall assume that the peeling off of the bonding 
from the fiber will occur mainly at one of these points. If it is further assumed that the 
shearing strength of the bonding is roughly equal to the strength of its adhesion to the 
fiber, then the lamination of the bonding at any point within the sample can occur only after 
its peeling~off from the fiber. 

The model used here leads to finite stresses in the fibers and the bonding. Therefore, 
it may be possible to determine whether or not the sample will subsequently disintegrate 
depending on the normal strength of the fiber ~, or the shearing strength of the bonding T, 
being exceeded. In the model of a continuous medium, infinite stresses are obtained at the 
tip of the fissure, and in the formulation of the problem of disintegration it is necessary 
to average the stresses in the vicinity of the crack over a certain length of the order of 
several interatomic distances; for example, the condition of equilibrium of Griffith's 
crack [7] can be obtained just in this way. 

However, even in the present case the formulation of the conditions of strength accord- 
ing to the maximum stresses is not feasible, since the stresses change very rapidly with 

time (see Figs. 2 and 3) and the dynamic tangential stresses do not at all attenuate as t § 
and do not tend to the static value. 

Small changes in the model, for example, the consideration of the viscosity, may result 
in large changes in the maximum values of the stresses and cast doubt on the above in- 
ferences. Finally, it is not natural to set the behavior of a mechanical system as a func- 
tion of conditions that occur only during a zero time interval (reaching the breaking point 
at once leads to disintegration). Therefore, we shall average the stresses over time in 
formulating the strength conditions. Thus, we take the strength conditions of the fiber 
and the bonding in the following form: 

t t 

t a (~) d~ < ~ , ,  77, ~ (~) d~ < ~,,  

where t, is the material constant having the significance of the time of averaging; ~, and 
�9 , are, respectively, the strengths of the fiber and the bonding. These quantities must be 
determined experimentally. If o and T are constant in time, then (3.1) goes over into the 
ordinary static strength condition. The same situation will occur for sufficiently large 
t and t, (t > t,) if o and T tend to their static value with the increase in time even if 
only on the average. If t, § O, then at the points of discontinuity of the integrands we 
find that the instantaneous values of the stresses need not exceed the breaking points. 
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Let the fiber-glass-reinforced plastic sample be stretched at infinity by a tension Q. 
It is natural to assume that Q < o,. Let one fiber suddenly break (simultaneous breaking of 
several adjacent fibers is improbable for Q < o,). The following four cases are possible: 
a) Two adjacent fibers break at a certain instant of time (from the symmetry of the problem); 
b) at a certain instant of time the bonding separates from the broken fiber or from adjacent 
fibers; c) events "a" and "b" occur simultaneously; d) subsequent disintegration does not 
occur. Which of these cases actually occurs depends on the value of the parameters q,/Q, 
T,/T~, b, and t,. Thus, corresponding to each fiber-glass-relnforced plastic there is a 
point in the four-dimensional space with appropriate coordinates. The entire space can be 

divided into three regions corresponding to the cases "a," "b," and "d." The hypersurface 
separating the first and the second regions will correspond to case "c." The boundaries of 
these regions for b = 0.1, i, i0 are shown in Fig. 4 for t, equal to two transit times of 
the shear wave between the fibers. The points corresponding to samples disintegrating by 
breaking of fibers lle below the boundary line and those corresponding to samples disinte- 
grating by the separation of the bonding lie above. The points corresponding to nondisinte- 
grating samples lie in the upper right part of the graph. The boundaries of the regions 
practically do not change with the change in b. This is due to the averaging of the dynamic 
stresses over time, since the instantaneous concentration of T has a strong dependence on b. 
Computations carried out for t, equal to five transit times showed that the position of the 
boundary has a weak dependence on t, also (the changes in the boundary on varying t, are of 
the same order as on varying b). 
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